TECHNICAL DATA 3 - 5
STANDARD ELEMENTS 6
SPECIAL TOOLS 7 - 9
INTRODUCTION 10
FUNCTION OF ENGINE/A35 11 - 15
TROUBLE SHOOTING 16 - 21
TRANSMISSION REPAIRS 22 - 27
MAGNETO REPAIRS 28 - 29
CARBURETOR REPAIRS 30 - 31
WIRING HARNESS SPRINT, TARGA 32 - 33
CYLINDER, PISTON, REED VALVE REPAIRS 34 - 37
CRANKSHAFT AND MAINSHAFT REPAIRS 38 - 41
FRAME AND SUSPENSION 42
WHEELS AND BRAKES 43
OIL PUMP 44
<table>
<thead>
<tr>
<th>Engine:</th>
<th>single cylinder, two cycle with reed valve, air cooler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bore × Stroke:</td>
<td>38 × 43 mm</td>
</tr>
<tr>
<td>Piston displacement:</td>
<td>49 ccm</td>
</tr>
<tr>
<td>Compression ratio:</td>
<td>9.1 : 1</td>
</tr>
<tr>
<td>Brake horse power:</td>
<td>1.45 kW (5200 min⁻¹)</td>
</tr>
<tr>
<td>Torque:</td>
<td>3.5 Nm (3500 min⁻¹)</td>
</tr>
<tr>
<td>Gear box:</td>
<td>automatic 2-steps, with two centrifugal clutches</td>
</tr>
<tr>
<td>Gearbox oil/quantity:</td>
<td>Valvomatic type A Suffix A - SAE 10 W 30/ccm 3</td>
</tr>
<tr>
<td>Ignition:</td>
<td>Flywheel magneto</td>
</tr>
<tr>
<td>Ignition advance:</td>
<td>1.5 + 0.2 mm B.T.D.C.</td>
</tr>
<tr>
<td>Contact breaker gap:</td>
<td>0.35-0.45 mm</td>
</tr>
<tr>
<td>Spark plug:</td>
<td>BOSHA F 80, BOSCH W 4A2, CHAMPION L82, NGK HS, EYQUEM 755, AC.C.42F</td>
</tr>
<tr>
<td>Spark plug gap:</td>
<td>0.8mm</td>
</tr>
<tr>
<td>Fuel:</td>
<td>MIXTURE OF GASOLINE 98 - oct AND TWO STROKE OIL</td>
</tr>
</tbody>
</table>
Transmission

Gear ratio 1st speed
(65/17) i = 3.8823

Gear ratio 2nd speed
(53/24) i = 2.4615

Gearbox ratio 1st speed
(3.88 * 72/11) i = 25.4117

Gearbox ratio 2nd speed
(2.46 * 72/11) i = 16.1189

Chain transmission ratio
(22/26) i = 0.846

Total transmission ratio 1st speed
(25.4117 * 0.846) i = 21.502

Total transmission ratio 2nd speed
(16.11/0.846) i = 13.631
<table>
<thead>
<tr>
<th>Position</th>
<th>Thread</th>
<th>Nm</th>
<th>Kp</th>
<th>Pound per foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spark plug</td>
<td>M14x1.25</td>
<td>18</td>
<td>1.83</td>
<td>13.27</td>
</tr>
<tr>
<td>Cylinder cover</td>
<td>M7</td>
<td>12</td>
<td>1.22</td>
<td>8.85</td>
</tr>
<tr>
<td>Cylinder stud bolts</td>
<td>M7</td>
<td>15</td>
<td>1.53</td>
<td>11.06</td>
</tr>
<tr>
<td>Magneto flywheel</td>
<td>M10x1</td>
<td>30</td>
<td>3.06</td>
<td>22.12</td>
</tr>
<tr>
<td>Clutch of 1st speed</td>
<td>M10x1</td>
<td>25</td>
<td>2.55</td>
<td>18.44</td>
</tr>
<tr>
<td>2nd speed driven gear</td>
<td>M14x1</td>
<td>80</td>
<td>9.15</td>
<td>59.0</td>
</tr>
<tr>
<td>Engine-frame fastening bolts</td>
<td>M8x1</td>
<td>25</td>
<td>2.55</td>
<td>18.44</td>
</tr>
<tr>
<td>RH engine cover</td>
<td>M6</td>
<td>7</td>
<td>0.71</td>
<td>5.16</td>
</tr>
<tr>
<td>LH engine cover</td>
<td>M6</td>
<td>6</td>
<td>0.61</td>
<td>4.42</td>
</tr>
<tr>
<td>Crankcase</td>
<td>M6</td>
<td>10</td>
<td>1.02</td>
<td>737</td>
</tr>
<tr>
<td>Mainshaft chain sprocket</td>
<td>M22</td>
<td>60</td>
<td>6.11</td>
<td>44.23</td>
</tr>
<tr>
<td>Swinging arm fastening screw</td>
<td>M12x1.25</td>
<td>35</td>
<td>3.57</td>
<td>25.81</td>
</tr>
<tr>
<td>Rear shock absorber</td>
<td>M10</td>
<td>25</td>
<td>2.25</td>
<td>18.44</td>
</tr>
<tr>
<td>Top fork lug</td>
<td>M12</td>
<td>35</td>
<td>3.57</td>
<td>25.81</td>
</tr>
<tr>
<td>Front and rear wheel spindle</td>
<td>M11x1</td>
<td>32</td>
<td>3.26</td>
<td>23.60</td>
</tr>
</tbody>
</table>
Ball bearings

<table>
<thead>
<tr>
<th>Installation</th>
<th>TOMOS Code. No.</th>
<th>Bearing No.</th>
<th>Dimensions $d \times D \times b$ (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crankshaft</td>
<td>035.070 x 2</td>
<td>6203-C3</td>
<td>17 x 40 x 12</td>
</tr>
<tr>
<td>Crankshaft</td>
<td>035.202</td>
<td>608</td>
<td>8 x 22 x 7</td>
</tr>
<tr>
<td>Countershaft</td>
<td>035.072</td>
<td>6201</td>
<td>12 x 32 x 10</td>
</tr>
<tr>
<td></td>
<td>035.031</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mainshaft</td>
<td>035.037</td>
<td>6006</td>
<td>30 x 55 x 13</td>
</tr>
<tr>
<td>Wheel axle</td>
<td>044.225 x 2</td>
<td>6201-Z</td>
<td>12 x 32 x 10</td>
</tr>
</tbody>
</table>

Seal rings

<table>
<thead>
<tr>
<th>Installation</th>
<th>TOMOS Code. No.</th>
<th>Dimensions $d \times D \times b$ (mm)</th>
<th>pcs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crankshaft</td>
<td>036.554</td>
<td>17 x 35 x 7</td>
<td>2</td>
</tr>
<tr>
<td>Mainshaft</td>
<td>035.620</td>
<td>35 x 47 x 7</td>
<td>1</td>
</tr>
<tr>
<td>Tool Code</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>732.746</td>
<td>MAGNETO FLYWHEEL PULLER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>732.202</td>
<td>FLYWHEEL HOLDER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>011.008</td>
<td>GAUGE PIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>732.193</td>
<td>DIAL GAUGE SUPPORT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>735.868</td>
<td>CRANKCASE DIS - ASSEMBLY TOOL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Tools</td>
<td>Part No.</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>------------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>735.753</td>
<td>Crankshaft Mounting Fork</td>
<td></td>
</tr>
<tr>
<td></td>
<td>731.155</td>
<td>Crankshaft Bearing Puller</td>
<td></td>
</tr>
<tr>
<td></td>
<td>702.856</td>
<td>Dis-Assembly Crankshaft</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bearings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>737.535</td>
<td>Clutch Spring Setting Tool</td>
<td></td>
</tr>
<tr>
<td></td>
<td>737.536</td>
<td>Roller Clutch Installer</td>
<td></td>
</tr>
<tr>
<td>Tool Number</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>732.367</td>
<td>MAINSHAFT NEEDLE BEARINGS INSTALLER</td>
<td></td>
<td></td>
</tr>
<tr>
<td>706.485</td>
<td>EXTRACTOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>706.472</td>
<td>EXTRACTOR BRIDGE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>736.913</td>
<td>BRAKE SHOES SPRING INSTALLING PLIERS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>714.011</td>
<td>ENGINE REPAIR STAND</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
This manual is intended as a help in "trouble shooting" and consequent repair procedure, which occurs in exploitation due to normal wear, but in most cases due to improper maintenance of vehicle or engine.

For a dependable and prompt repair, follow the general rules as:
- Always use adequate tools.
- Where necessary, use a plastic mallet when dismantling individual assemblies.
- Clean individual parts prior to each check.
- Carefully clean all parts, oil movable parts, which are fitted by embossing them, and replace gaskets and sealing rings prior to re-assembly.
- Observe torque figures table when screwing on screws and nuts.

The manual shows only the execution of dis-assembly operations in which necessary special tools are needed. Dis-assembly of other parts (see explosion view in Spare parts catalogue) is meant like a common knowledge of an qualified mechanic to whom this manual is dedicated.
TRANSMISSION PARTS

Legenda
- rotating powered elements
- free rotating elements
- stand still elements
Idle run
2nd speed
1. SPARK PLUG CONDITIONS

2. ENGINE DOES NOT START

3. ENGINE RUNS OVER BUT STALLS, ENGINE RUNS IRREGULARLY, STOPS OR IDLES ROUGHLY.

4. POWER LOOS

5. ENGINE MISFIRES
A brown, tan or gray firing end is indicative of correct engine running conditions and the selection of the appropriate heat rating plug.

White deposits have accumulated from excessive amount of oil in the combustion or through the use of low quality oil. Remove deposits or a hot spot may from.

Black sooty deposits indicate an over-rich fuel /air mixture, or a malfunctioning ignition system. If no improvement is obtained, try one grade hotter plug.

Wet, oily carbon deposits form an electrical leakage path along the insulator nose, resulting in a mistire. The cause may be a badly worn engine or a malfunctioning ignition system.

A blistered white insulator or melted electrode indicates over advanced ignition timing or a malfunctioning cooling system. If correction does not prove effective, try a colder grade plug.

A worn spark plug not only wastes fuel but also overloads the whole ignition system because the increased gap requires higher voltage to initiate the spark. Adjust spark plug gap or replace.
TOMOS 5

ENGINE MISFIRES

First check spark plug to find cause.

- Fuel
 - Clean, air blow
 - Clogged
 - Fuel filter
 - Fuel tank

- Spark
 - Re-start
 - Clean
 - Spark
 - Check timing
 - Adjust
 - Ignition coil
 - Faulty, No contact
 - Plug cap
 - Spark plug
 - Incorrect gap, Carbon deposit, Dirty, Oil, Burned

Replace fuel
Replace
TROUBLES IN GEARBOX

* When starting, engine runs in neutral gear and also with higher number of revs clutch does not engage:
 - Throttle down and restart engine (oil is still cool and dense). When driving off, throttle up gradually to reduce jerks.
 - Loosen or broken retain spring of 1st speed gear selflocking clutch.
 - 1st speed gear selflocking clutch cage damaged.
* When starting, the engine joggles:
 - Not enough oil in the gearbox- fill up to the required level.
 - Clutch drum or 1st speed clutch shoe elements damage.
 - 1st speed clutch retaining nut slackened (noise at engine idle run).
* Clutch skidding (especially in cool weather):
 - Uncorrect oil in gearbox - replace oil with standard.
 - Clutch not shifting from the 1st into 2nd or not engaging at all:
 - Engine not powerful enough-see chapter 3 - Power loss.
 - Excessive oil in gearbox- check level.
 - Brakes not disengaging - grease control cables.
 - Clutch blocked - try to operate clutch at higher number of revs with motorized bicycle supported by stand.
 - Countershaft and 1st speed gear selflocking clutch seized - check the slide bearing surface.
* When shifting to 2nd gear, clutch joggles:
 - Chain sagged - tighten chain.
 - Not enough oil in the gearbox - fill up to the required level.
* With engine disengaged, the motorized bicycle is difficult to move forward - rearward:
 - Check the 1st speed gear selflocking clutch for damage.
 - With engine in idle run in rearward motion blows:
 - Check the starter shaft brake spring proper function.
* Transmission not disengaged by idle run:
 - Clutch drum incorporated roller clutch blocked.
* When starting the engine does not turn over:
 - Starter shaft holding clamp do not engage the inner chain transmission.
 - Clutch drum incorporated roller clutch damaged.

In case of transmission part damage or failure is necessary to disassemble, only the RH engine cover and proceed with disassembling and checking the parts as shown further. Prior of operation drain the oil from the gearbox, dismantle the exhaust pipe (box wrench 10 mm, wrench 13 mm), the lateral protection shield fixed at swinging arm (wrench 10 mm), and slacken the cover screws. Attention at distance washers on starter shaft and countershaft.
Slacken the protective clutch washer with a socket 19 and with special tool 732.202 remove 1st speed clutch nut (fig. 1).
Detach clutch drum by hand or by means of an standard extractor in case of bushing seizure (fig. 2).

The starter shaft and the countershaft are connected by a starter chain, so both shafts will have to be taken out together (fig. 3).
Remove the standard washers on the crankshaft and on the mainshaft (fig. 4).
Remove the sq-circ and separate clutches 1st and 2nd speed.
Dismantle both clutches, spring is removed with a screwdriver.
In this manner brake strips are released, and all three shoes can be removed.
Press pins out of shoes and check brake strips, spring inside of shoes and clutch hub for excessive wear (Fig. 5).
Clutch shoes must slip freely on clutch hub. In case of use of prescribed oil quantity and quality the wear of clutch shoes lining is reduced at minimum.

At first, assemble the 1st speed clutch at reversed order of dismantling. Particular care should be taken of brake strips, they must protect each other against falling out.
Fix the main pin of the device 737.535 with the thinner part facing upwards. The spring joint must be placed in the middle of one shoe. With the lever of the device insert the spring in the shoes groove. (Fig. 6).
To assemble the 2nd speed clutch turn the device over. The clutch hub with gear must be placed in the way the gear is on bottom and the gap between two shoes fits with the pin. The manner of mounting the spring is the same as mentioned before for the 1st speed clutch.
Remove and inspect the 1st speed driven gear selflocking clutch in case of transmission troubles mentioned on page 24. Remove the sq-circ and at the countershafts toothed. Unfasten the wire spring (Fig. 8) and separate a small chain sprocket with roller cage. Remove the selflocking clutch and the rollers (Fig. 10).
In case of sliding surface damage of selflocking clutch replace the body (223.463). Check the sliding surface of selflocking clutch on countershaft.

Dismantling of the needle clutch is necessary only in case of replacement.
A new needle clutch is pressed with special tool no. 737.536 (Fig. 7).
The needle clutch must be pressed with the signed side towards the center of the clutch drum, if not it may operate in the reverse direction.

Clearance between shoes and clutch drum rim is approx. 0.4 mm. Axial clearance of the clutch drum is from 0.1 m to 0.3 mm by means of inserting in the adjusting thrust washer of 0.3 mm or 0.5 mm under the clutch (fig. 5/A).
If is necessary to replace chain sprocket or claw collar on pedal shaft of kick shaft, first remove protective ring (fig. B'1) and spring washer (fig. B'2). During assembly take care that the thinner part of collar in mounted forward or else, the brake spring slides across the chain sprocket. Check the chain for overtension or some other damage.

![Diagram](image)

Fig. B

A damage of sliding surface of 1st speed driven gear and countershaft may be caused due to low oil quantity in the gearbox. Fix the countershaft into a vice and unscrew the nut with wrench 19 and remove the 2nd speed gear with an extractor. Replace damaged parts.

Reassemble the countershaft in the reversed order of dismantling.

Use of grease is not suggested because it may impede the function of the selflocking clutch. Put the chain sprocket with cage so that the beginning of wire spring is turned 90° leftward from spring nose. (fig. 9). Lock the wire spring to riveted nose on the selflocking clutch body.

Before tightening nut, it is necessary to check the proper function of the assy. Firmly hold 2nd speed driven gear with the left hand and the clutch drum with the right hand. When clutch drum rotates counterclockwise, both clutches idle, when it rotates clockwise the motion is transmitted to the crankshaft (fig. 11).
In case of any magneto faulty part replacement actuate with dismantling at sequent parts as follows:
- starting/lever pedal (wrench 11, plastic mallet)
- side protection shield fixed on swinging arm (wrench 10)
- engine cover (flat screwdriver)
- flywheel nut (socket wrench 17, flywheel holder = special tool 732.202 = fig. 12)
- flywheel (wrench 32 and 19, flywheel extractor = special tool 732.746 = fig. 13)
- stator plate (flat screwdriver)

For proper function of the engine is essential a correct ignition timing. The ignition advance should be 1.5°–0.2 mm.
The most common cause of incorrect timing is due wear or damage of contact breaker points, wear of cam actuated breaker nose lever, damage of condenser. To provide the exact timing is necessary to replace faulty parts and proceed (fig. 14) as follows:
- Screw the special tool 732.193 and dial gauge 975.709 with gauge pin 011.008 into the spark plug hole. By rotating the flywheel put the piston to the T.D.C. and set the dial gauge to zero.
- With the flywheel in T.D.C. set the contact breaker points gap between 0.35 to 0.45 mm
- With a test light, buzzer or Ohm meter determine when contact breakerpoints connection is made. The testing device must be connected to the short circuit (black) wire and to the ground of the engine. At the moment of connection of the points the test battery light will glow brightly, the buzzer will change the acoustic frequency or the Ohm tester will show approx. zero Ohms.
- Rotate the flywheel in the clockwise direction until the dial gauge will show the value of 1.5 mm
- By means of oblong fixing openings rotate the stator base plate and find a contact breaker points connection opening position (test indication).
- Tighten the stator base plate and recheck the ignition advance which should be max. 1.7 mm
- In case of excessive advance, the stator base plate should be rotated in the direction of entire rotation (see arrow of flywheel). In case of insufficient advance turn the plate in the opposite direction.
- In case of uncapable timing setting with a stator base plate rotation provide with the contact breaker points gap setting but under prescribed limits.
- For efficient spark intensity or high ignition voltage is essential a proper abras adjustment. As a matter of fact, it is the distance between the edge of the ignition coil pole shoe and the receding magnet pole edge at the opening point of the contact breaker and it should be within the range of 12 ± 2 mm (0.473 ± 0.079 in). The gap should be measured the moment the intensity of light or sound frequency is changed on the gauge (fig. 14).
Note:
For a good ignition must be provided a proper correlation between ignition advance, contact breaker points gap and abras.
In case of carburetor troubles mentioned in trouble shooting chapters No: 3, 4 and 5 on pages 19 – 21 proceed with dismattling at sequent parts as follows:
- carburetor area protection shield (detach the rubber protection sheet, slackes the screwsflat screwdriver)
- fuel tank (screw on bottom side near horn attachment on frame and on rubber elements-box wrench 10 mm)
- carburetor cpl. with air filter and rubber dust protection (screw of fixing claw - flat screwdriver) fig. 15.

The intake silencer remains between the angle supports and engine thus is necessary to remove the engine to replace it.

Dismantle the carburetor into component parts (fig. 17). Clean the parts in gasoline (petrol) and blow them by compressed air.
Replace if necessary worn parts and carefully reassemble, especially the needle valve and float. Slightly oil the air filter.
In case of mentioned parts troubles in trouble shooting chapters No. 2, 3 and 4 on pages 18 – 20 proceed with dismantling at sequent parts as follows:
- carburetor
- exhaust pipe
- head cover and cylinder (box wrench 11 mm)
- piston (suitable pliers and gudgeon pressing pin)

Check piston and cylinder surfaces for possible damages. With micrometer check piston dia on points d1, d2, d3 at right angles to gudgeon pin and compare the readings with the corresponding group on piston and in the table (fig. 18).

<table>
<thead>
<tr>
<th>Skupina Group</th>
<th>d1</th>
<th>d2</th>
<th>d3</th>
<th>ovalnost round-off</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>37.955</td>
<td>37.865</td>
<td>37.775</td>
<td>0.045</td>
</tr>
<tr>
<td>B</td>
<td>37.965</td>
<td>37.875</td>
<td>37.785</td>
<td>0.045</td>
</tr>
<tr>
<td>A</td>
<td>1.4954</td>
<td>1.4919</td>
<td>1.4883</td>
<td>0.0018</td>
</tr>
<tr>
<td>B</td>
<td>1.4958</td>
<td>1.4923</td>
<td>1.4887</td>
<td>0.0018</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Skupina Group</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>38.010 ±0.01</td>
<td>38.020 ±0.02</td>
</tr>
<tr>
<td></td>
<td>1.500 ±0.004</td>
<td>1.504 ±0.006</td>
</tr>
</tbody>
</table>

Bore taper and cone-shaped:
\[D_1 = \text{max. } 0.012 \text{ mm (0.473 \cdot 10^{-3} \text{ in})} \]
Upon the request of the market there is available one different pistons: 50 km/h (30 m.p.h.) - fig. 19 with its own function diagram.
Damage to reed valve may be caused also by steel material run-down (see function on fig.20, assy. parts - fig.21).
NOTE:
Replacement of cpl. reed valve is suggested.

Check conrod bending by help of two calipers (Fig. 22). Check the needle bearing clearance and bearing rolling surface for damage.
Unscrew the crankcase halves connecting screws.
Install on the magneto side a case splitter tool 735.888 with the three magneto base plate fixing screw. With wrench 13 mm screw on the device A and detach both halves (fig. 23).
Detach the crankshaft from the RH crankcase half with a plastic mallet (fig. 24). In case of remaining ball bearing on the crankshaft remove it with the extractor 731.155 (fig. 25).
Crankshaft Inspection

Check clearance of the conrod small and big end bearing assemblies.

Check the crankshaft between the center of a horizontal alignment tool and measure the out-of-round on all the points indicated in fig. 26. Permissible out-of-round should be within 0.02 mm (0.008 in) at check points 2 and 0.01 mm (0.004 in) at check points 1 and 4. Check if the crankshaft conical part is damaged, inspect the thread on semiaxles and the keyway.

Fig. 26

Note
As required, centering is only carried out with a copper hammer, grip pliers and two levers.
Check both crankcase halves for possible damages or distortions, particularly the joint surfaces, to avoid later leaking of oil from gearbox. Check all bearings, if clearance is noticed, the bearings must be replaced. Remove seal rings by screwdriver. For disassembly of ball bearings and seal rings assembly alternatively use a pressing pin 702.856 (fig. 27 and 28).

Crankshaft is impressed in crankcase halves by extractor 735.888 actuating with screw B (fig. 29 and 30) - wrench 24 and 13. In case of machine press assembly is necessary a use of crankshaft insert forks 735.753 to prevent crankshaft deflection.
In case of mainshaft toothing damage replace it. Slacken the chain sprocket nut by a wrench 30 mm and using the special tool 732.202 (fig. 31). Knock out the mainshaft by plastic mallet.

Fig. 31

In case of needle bearings or seal ring (incorporated in first needle bearing, code 035.502) damage knock out them by suitable tool but pay attention not to damage bearing lying surface on mainshaft. Pay attention on sequence assembly of needle bearings (fig. 32) by machine press tool and special tool 732.367.

Fig. 32
The front fork lower leg can be removed as it is shown in fig. 33,
- by unscrewing remove lower leg from the front fork (fig.33/1)
- the spring will remain attached either to the upper or to the lower screwed plug - remove by unscrewing
- the upper plug should be removed after taping out the elastic pin (fig.33/2)
- the lower plug can be removed with longer allen key (9 mm), (fig.33/3)

Checking:
Length of new spring: \(L = 215 \text{ mm} \)
Wear limit: \(L = 200 \text{ mm} \)
Check the outer and inner surfaces of the stanchions for sign of excessive wear.
Check for excessive play and for the straightness of the fork legs.
Reassemble in reverse order of dismantling.
The spring and sliding surfaces should be greased with water resistant grease (LIS 2)
Wheels are cast aluminium alloy type. No special maintenance is required as usual ball bearings greasing and wear checking.

Brakes are drum type (fig. 34) thus there is a periodically need of linings dust (non asbestos) cleaning; cable controls, brake operating cam and brake shoes support pin greasing. Disassembly of brake shoes is easier with pliers - special tool 736.913.
After assembly or repair of models with oil pump you must keep to the following instructions:
The pump is connected to the magneto nut on the crankshaft by a special clutch.
- Unscrew the bleed screw on the oil pump and wait until oil from the tank under the seat flows to the pump.
 The screw is then screwed on (fig. 35).
- Pour approx. 1 l gas mixture in the ratio od 1:50 (2% oil) into the fuel tank and start the engine. Let the engine
 run of for approx. 5 min so as to make the oil pump push oil to the engine.
- Fill up the fuel tank with regular gas.
Take care lest oil level in the oil tank does not fall under the marking MIN. Pay special attention to the routing
of the oil lines to and from the oil pump. If the outflow line is crimped, oil will not reach the carburetor causing
severe engine damage.

Fig. 35